

Supported by

Run Plan Development For FY2010

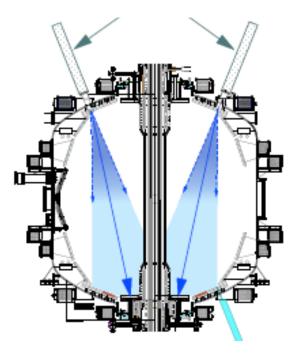
College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

E. D. Fredrickson (Run Coordinator)

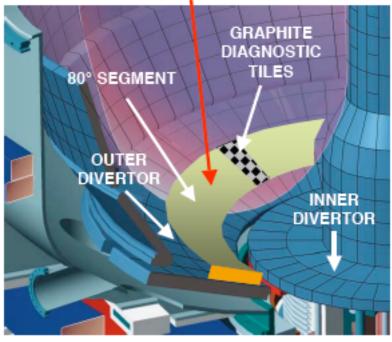
Princeton Plasma Physics Laboratory

S. A. Sabbagh (Deputy) Columbia University

NSTX Research Forum for FY2010 Research 1-3 December 2009

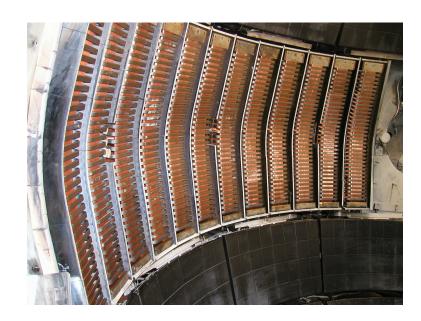

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

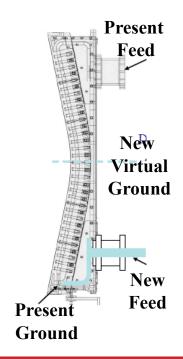
2010 Research Forum has been a Success


- Thanks to the hard work by many people
 - Michael Bell and Job Menard for organizing the meeting
 - K. Silber and M. Cohen for web support
 - A/V crew Larry Nixon, Bob Reed, Carl Scimeca
 - Logistics Joanne Savino
 - Refreshments Masa Ono and Joanne
 - Presenters of plenary talks from other labs Brian Lloyd (MAST), Max Fenstermacher (DIII-D), Earl Marmar (C-MOD)
 - TSG leaders who led the breakout session and prepared summaries
- Excellent proposals made by many team members
 - 156 proposals were considered, requesting ~ 168 days
 - TSG leaders have provided a prioritization of which ones can be run this year

This year NSTX will have a major modification, the LLD, which may have a large impact on operations

- We need to learn how to operate with LLD,
 - Assess impact on all aspects of NSTX physics research
 - Avoid damaging the LLD, or its Lithium filling
 - How to optimize plasmas using LLD




Liquid Lithium Divertor (LLD)

Successful upgrade of HHFW finished at end of 2009,

- Again, need to learn how to use this capability to improve NSTX plasma operations
 - Better heating of NBI H-mode plasmas
 - Aid in non-inductive start-up experiments
 - Use in "phase-space engineering" in Energetic particle group.
 - Current profile tailoring
 - Etc.

New diagnostic capabilities

- Beam Emission Spectroscopy (density fluctuation) diagnostic
 - 8 to 16 channels with 1MHz bandwidth
- Reflectometer upgrades
 - 8 channel system (30GHz to 50GHz)
 - Possibility of additional 8 channels after April (55GHz to 75GHz)
 - Possibility 5 channel, high res system after April (δ f=0.35GHz, 53-78GHz)
- Extensions to Langmuir probe arrays
 - Inter-LLD arrays
 - Outboard array
- Fast cameras
 - Divertor and LLD (2-color IR)
- Spectroscopy
 - Lyman-alpha array
 - Divertor UV/visible

NSTX FY2010 research milestones:

- Proposed OFES Joint Research milestone: "Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER."
- R(10-1): Assess sustainable beta and disruptivity near and above the ideal no-wall limit:
 - Utilize new mode control tools/softwareto characterize and quantify the achievable beta sustainment and disruption avoidance in the ST
- R(10-2): Characterize HHFW heating, current drive, and current rampup in deuterium H-mode plasmas.
 - Establish HHFW as a reliable, high-power H&CD tool for start-up and sustainment, transport studies, scenario optimization...
- R(10-3): Assess H-mode pedestal characteristics and ELM stability as a function of collisionality and lithium conditioning
 - Utilize particle pumping and density control from LITER, LITER+LLD
 - Determine the relative roles of reduced pedestal density and collisionality versus the possible direct effects of lithium, assess L-to-H threshold, pedestal height and barrier width pedestal stability (affecting ELM type and size), and the down-stream divertor plasma and surface conditions

Run-time guidance for FY2010 run

- FY2010 run-time allocation = 15 run weeks = 75 run days
- 15 days for cross-cutting + calibrations including 5-10 days for restart w/ LLD+shot/scenario development with LLD → 60 run days for TSGs
- Complete 1st priority experiments with 75% of total \rightarrow 45 run days
 - OFES Joint Facility and NSTX Research Milestone XPs are highest priority, and should be completed within this run-time allocation
- TSGs should develop plans for 1st +2ndpriority according to allocation below
 - TSG's are NOT guaranteed to receive the full allocation shown
 - Actual allocation will be decided at mid-run assessment

TSG	1st priority XP		
	run days	priority XPs	Milestones
Advanced Scenarios and Control	5.5	8	
Boundary Physics	8	10	Joint, R(10-3)
Lithium Research	5.5	8	
Macroscopic Stability	6	8	R(10-1)
Solenoid-free Start-up and Ramp-up	4.5	6	
Transport and Turbulence	5.5	7	
Wave-Particle Interactions	6	8	R(10-2)
ITER high priority	4	5	
Total	45	60	

156 Proposal Ideas Reviewed Requesting 168 Run Days

TSG	<pre># of XPs proposed</pre>	Run days requested
Advanced Scenarios and Control	20	21.5
Boundary Physics	33	33
Lithium Research	21	19.1
Macroscopic Stability Solenoid-free Start- up and Ramp-up	23 4	23.5 10
Transport and Turbulence	27	33.7
Wave-Particle Interactions	28	27.1
ITER high priority Total	- 156	- 167.9

•Allocate remainder after mid-run assessment considering:

- -Progress to date
- -Achievement of
- Milestones/ITPA tasks
- -New developments

Pre-run preparation/planning Activities

- Develop start-up program compatible with LLD
 - Start-up without Boronization no non-Lithium operation period planned
 - Optimize filling profile for LLD (how much Li, how soon?)
 - How much Li is needed to protect LLD plates?
 - What is optimum fill level for plasma operations?
 - Incorporate relevant XPs in LLD commissioning activity
- Work out new 'fiducial' program to monitor machine conditions
- Will Li passivation run periods be possible?
 - Identify XPs that desire this
 - Develop techniques to recover from Li passivation
 - How much running can we do with cold LLD?
- Identify catalog of plasma conditions beyond "standard" shots that may require re-development
- As always, need to get XPs written, approved before start of run!

Draft Start-up run plan

- 1. Pump-down
- 2. LLD ISTP before Bake-out up to 400°C
- 3. Bake-out for 3 weeks with LLD ~50°C above carbon temperature
- 4. Cool-down vessel with LLD ~50°C above carbon temperature
- 5. Continue LLD ISTP checkout
- 6. Start Plasma ISTP and field-only shots ASAP
 - 1. No DGHDC or HeGDC on moly to avoid possible arcing on the rough moly surface
 - 2. Evaporate Li from LITERS to coat LLD at 210°C to at least 250 nm (~1day)
- 7. First plasma attempts:
 - 1. LLD at room temp, no boronization, probably some continued LITER operation to get burn-through modest to high triangularity plasmas; continue until suitable NBI target plasma obtained
- 8. Start NBI heated plasmas
 - 1. do HHFW conditioning
 - 2. If no burn through, keep trying with more Li; no boronization ever

(all this should take 10-15 days (post bakeout), depending upon success and amount of HHFW conditioning)

Draft Start-up run plan - continued

- 1. Proceed to XP LLD Commissioning Step-1 (LLD cold, R_{isp} =0.35, R_{osp} =0.50)
- 2. Proceed to XP LLD Commissioning Step-2 and Day-3 (LLD warm, R_{isp} =0.35, R_{osp} =0.50)
 - 1. Evaluate IR camera data and benchmark simulations
 - {Delay Step 3, R=0.75 m (on LLD) until later in run, ongoing discussions on how soon power should be directly applied to LLD R_{sp} =0.75:
 - 1. Checkout plasma systems for robustness.
 - 2. Bring online diagnostic systems critical for Step 3.
 - 3. Test LLD with lowest possible power density deposition via open field line power deposition.
 - 4. Acquire LLD halo current and disruption data with open field line low-power deposition. }
- 3. Proceed to XP LLD Commissioning Step-4 (LLD warm, R_{isp}=0.63, R_{osp}=0.75)
 - 1. Evaluate IR camera data and benchmark simulations
- 4. Proceed to XP LLD Commissioning Step-5 (LLD cold, R_{isp}=0.63, R_{osp}=0.75)
- 5. Proceed to XP LLD Commissioning Step-6 (LLD warm, R_{isp}=0.63, R_{osp}=0.75)
- 6. Start the other lithium XPs most directly related to LLD characterization and milestones (Vlad, Kallman, Jaworski..)
- 7. LLD is commissioned, start the other XP

Next Step Activities

- Begin to review 1st priority XPs within the group
 - Some XPs from FY09 that require minimal changes?
 - Identify experiments that should be run during the first two weeks
 - Identify experiments desiring passivated Lithium?
 - Start to identify catalog of shot conditions needing to be developed.
- Expect to begin operations early in March and end at some later time
 - Final XP reviews will commence early in January
 - Shot conditions for Prioritized XPs needed well before reviews
- Start planning for LLD 'decomissioning"